Simplicial Lipschitz optimization without the Lipschitz constant
نویسندگان
چکیده
In this paper we propose a new simplicial partition-based deterministic algorithm for global optimization of Lipschitz-continuous functions without requiring any knowledge of the Lipschitz constant. Our algorithm is motivated by the well-known Direct algorithm which evaluates the objective function on a set of points that tries to cover the most promising subregions of the feasible region. Almost all previous modifications of Direct algorithm use hyper-rectangular partitions. However, other types of partitions may be more suitable for some optimization problems. Simplicial partitions may be preferable when the initial feasible region is either already a simplex or may be covered by one or a manageable number of simplices. Therefore in this paper we propose and investigate simplicial versions of the partition-based algorithm. In the case of simplicial partitions, definition of potentially optimal subregion cannot be the same as in the rectangular version. In this paper we propose and investigate two definitions of potentially optimal simplices: one involves function values at the vertices of the simplex and another uses function value at the centroid of the simplex. We use experimental investigation to compare performance of the algorithms with different definitions of potentially optimal partitions. The experimental investigation shows, that proposed simplicial algorithm gives very competitive results toDirect algorithm using standard test problems and performs particularly well when the search space and the numbers of local and global optimizers may be reduced by taking into account symmetries of the objective function.
منابع مشابه
An effective optimization algorithm for locally nonconvex Lipschitz functions based on mollifier subgradients
متن کامل
Investigation of selection strategies in branch and bound algorithm with simplicial partitions and combination of Lipschitz bounds
Speed and memory requirements of branch and bound algorithms depend on the selection strategy of which candidate node to process next. The goal of this paper is to experimentally investigate this influence to the performance of sequential and parallel branch and bound algorithms. The experiments have been performed solving a number of multidimensional test problems for global optimization. Bran...
متن کاملEstimation of the Lipschitz constant of a function
A number of global optimisation algorithms rely on the value of the Lipschitz constant of the objective function. In this paper we present a stochastic method for estimating the Lipschitz constant. We show that the largest slope in a fixed size sample of slopes has an approximate Reverse Weibull distribution. Such a distribution is fitted to the largest slopes and the location parameter used as...
متن کاملNon-Lipschitz Semi-Infinite Optimization Problems Involving Local Cone Approximation
In this paper we study the nonsmooth semi-infinite programming problem with inequality constraints. First, we consider the notions of local cone approximation $Lambda$ and $Lambda$-subdifferential. Then, we derive the Karush-Kuhn-Tucker optimality conditions under the Abadie and the Guignard constraint qualifications.
متن کاملRobust H_infinity Filter Design for Lipschitz Nonlinear Systems via Multiobjective Optimization
In this paper, a new method ofH∞ observer design for Lipschitz nonlinear systems is proposed in the form of an LMI optimization problem. The proposed observer has guaranteed decay rate (exponential convergence) and is robust against unknown exogenous disturbance. In addition, thanks to the linearity of the proposed LMIs in the admissible Lipschitz constant, it can be maximized via LMI optimizat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Global Optimization
دوره 59 شماره
صفحات -
تاریخ انتشار 2014